93 research outputs found

    Automatic generation of level maps with the do what's possible representation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the do what's possible representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.Final Accepted Versio

    The riddle of togelby

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.At the 2017 Artificial and Computational Intelligence in Games meeting at Dagstuhl, Julian Togelius asked how to make spaces where every way of filling in the details yielded a good game. This study examines the possibility of enriching search spaces so that they contain very high rates of interesting objects, specifically game elements. While we do not answer the full challenge of finding good games throughout the space, this study highlights a number of potential avenues. These include naturally rich spaces, a simple technique for modifying a representation to search only rich parts of a larger search space, and representations that are highly expressive and so exhibit highly restricted and consequently enriched search spaces. We treat the creation of plausible road systems, useful graphics, highly expressive room placement for maps, generation of cavern-like maps, and combinatorial puzzle spaces.Final Accepted Versio

    Iterated Prisoner's Dilemma with Choice and Refusal of Partners

    Get PDF
    This article extends the traditional iterated prisoner's dilemma (IPD) with round-robin partner matching by permitting players to choose and refuse partners in each iteration on the basis of continually updated expected payoffs. Comparative computer experiments are reported that indicate the introduction of partner choice and refusal accelerates the emergence of mutual cooperation in the IPD relative to round-robin partner matching. Moreover, in contrast to findings for round-robin partner matching (in which the average payoffs of the players tend to be either clustered around the mutual cooperation payoff or widely scattered), the average payoff scores of the players with choice and refusal of partners tend to cluster into two or more distinct narrow bands. Preliminary analytical and computational sensitivity studies are also reported for several key parameters. Related work can be accessed here: http://www.econ.iastate.edu/tesfatsi/tnghome.htmiterated prisoner's dilemma; preferential partner selection; evolutionary game theory

    A Representation for Many Player Generalized Divide the Dollar Games

    Get PDF
    Divide the dollar is a simplified version of a two player bargaining problem game devised by John Nash. The generalized divide the dollar game has n \u3e 2 players. Evolutionary algorithms can be used to evolve individual players for this generalized game but representation—i.e., a genome plus a move or search operator(s)—must be carefully chosen since it affects the search process. This paper proposes an entirely new representation called a demand matrix. Each individual in the evolving population now represents a collection of n players rather than just an individual player. Players use previous outcomes to decide their choices (bids) in the current round. The representation scales linearly with the number of players and the move operator is a variant of an evolution strategy. The results indicate that this proposed representation for the generalized divide the dollar game permits the efficient evolution of large player populations with high payoffs and fair demand sets

    Tego - A framework for adversarial planning

    Get PDF
    This study establishes a framework called ∗-Tego for a situation in which two agents are each given a set of players for a competitive game. Each agent places their players in an order. Players on each side at the same position in the order play one another, with the agent\u27s score being the sum of their player\u27s scores. The planning agents are permitted to simultaneous reorder their players in each of several stages. The reordering is termed competitive replanning. The resulting framework is scalable by changing the number of players and the complexity of the replanning process. The framework is demonstrated using iterated prisoner\u27s dilemma on a set of twenty players. The system is first tested with one agent unable to change the order of its players, yielding an optimization problem. The system is then tested in a competitive co-evolution of planning agents. The optimization form of the system makes globally sensible assignments of players. The co-evolutionary version concentrates on matching particular high-payoff pairs of players with the agents repeatedly reversing one another\u27s assignments, with the majority of players with smaller payoffs at risk are largely ignored

    Parameter selection for modeling of epidemic networks

    Get PDF
    The accurate modeling of epidemics on social contact networks is difficult due to the variation between different epidemics and the large number of parameters inherent to the problem. To reduce complexity, evolutionary computation is used to create a generative representation of the epidemic model. Previous gains from the use of local, verses global, operators are further explored to better balance exploration and exploitation of the genetic algorithm. A typical parameter study is conducted to test this new local operator and the new method of point packing is utilized as a proof of concept to perform a better search of the parameter space. All experiments from both approaches are tested against nine epidemic profiles. The point-packing driven parameter search demonstrates that the algorithm parameters interact substantially and in a non-linear fashion, and also shows that the good parameter settings are problem specific.Natural Sciences and Engineering Research Council of Canad

    Modelling of Vaccination Strategies for Epidemics using Evolutionary Computation

    Get PDF
    Personal contact networks that represent social interactions can be used to identify who can infect whom during the spread of an epidemic. The structure of a personal contact network has great impact upon both epidemic duration and the total number of infected individuals. A vaccine, with varying degrees of success, can reduce both the length and spread of an epidemic, but in the case of a limited supply of vaccine a vaccination strategy must be chosen, and this has a significant effect on epidemic behaviour.In this study we consider four different vaccination strategies and compare their effects upon epidemic duration and spread. These are random vaccination, high degree vaccination, ring vaccination, and the base case of no vaccination. All vaccinations are applied as the epidemic progresses, as opposed to in advance. The strategies are initially applied to static personal contact networks that are known ahead of time. They are then applied to personal contact networks that are evolved as the vaccination strategy is applied. When any form of vaccination is applied, all strategies reduce both duration and spread of the epidemic. When applied to a static network, random vaccination performs poorly in terms of reducing epidemic duration in comparison to strategies that take into account connectivity of the network. However, it performs surprisingly well when applied on the evolved networks, possibly because the evolutionary algorithm is unable to take advantage of a fixed strategy

    Hierarchical clustering and tree stability

    Get PDF
    Hierarchical clustering via neighbor joining, widely used in biology, can be quite sensitive to the addition or deletion of single taxa. In an earlier study it was found that neighbor joining trees on random data were commonly quite unstable in the sense that large re-arrangements of the tree occurred when the tree was reconstructed after the deletion of a single data point. In this study, we use an evolutionary algorithm to evolve extremely stable and unstable data sets for a standard neighbor-joining algorithm and then check the stability using a novel type of clustering called bubble clustering. Bubble clustering is an instance of associator clustering. The stability measure used is based on the size of the subtree containing each pair of taxa, a quantity that provides an objective measure of a given trees hypothesis about the relatedness of taxa. It is shown experimentally that even in data sets evolved to be stable for a standard neighbor joining algorithm, bubble clustering is a significantly more stable algorithm

    Representation for Evolution of Epidemic Models

    Get PDF
    Creating a representation capable of generating personal contact networks that are most likely to exhibit specific epidemic behavior is difficult due to the inherit volatility of an epidemic and the numerous parameters accompanying the problem. To surpass these hurdles, evolutionary algorithms are used to create a generative solution which generates personal contact networks, modeling human populations, to satisfy the epidemic duration and epidemic profile matching problems. This representation is entitled the Local THADS-N representation. Two new operators are added to the original THADS-N system, and tested with a traditional parameter sweep and a parameter selection method known as point packing on nine epidemic profiles. Additionally, a new epidemic model is implemented in order to allow for lost immunity within a population thus increasing the length of an epidemic.Natural Sciences and Engineering Research Council of Canada (NSERC
    • 

    corecore